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Non-linear optics describes the behavior of light when the medium’s polarization density is re-
lated to the electric field through more than just first-order contributions. In this experiment, we
investigate various aspects of a non-linear optical phenomenon called Second Harmonic Generation
(SHG). This involves exciting a 40 mm long Poled Lithium Niobate (PPLN) crystal with a 1560 nm
laser so that 780 nm light is generated due to the crystal’s non-linear response to light. We find
that the frequency doubled power is related to the input polarization angle 2θ and input power Qin

by Qout ∝ sin4(2θ) and Qout ∝ Q2
in. We also obtain bandwidth acceptance ranges for the crystal’s

temperature (δT = 2.9± 0.1 ◦C) and laser wavelength (δλ = 0.299± 0.003 nm). Moreover, we find
good agreement between our experimental results and theoretical predictions.

I. INTRODUCTION

Optical phenomena have been observed and studied for
thousands of years, as can be confirmed by archaeological
finds of human-made lenses dating from as early as 2000
BC [1]. Still, the study of light and its interaction proper-
ties has not stopped evolving. Johannes Kepler wrote his
treatise about optics in the early 17th century [2]. Isaac
Newton theorized about the nature of light and published
Opticks in the early 18th century [3]. Maxwell finished
his classical theory of electromagnetism in the late 19th
century [4]. More recently, lasers were invented. First
described as ”a solution looking for a problem,” they are
now useful in research, medicine, industry, and a variety
of other fields [5]. In particular, they are a useful tool in
the study of non-linear optics.

A. Second-order Non-linear Optical Processes

Non-linear optics are distinguished by responses to an
applied optical field by a system that depends on the
strength of the applied field in a non-linear manner [6].
For example, when subject to an electric field Ei, the
atomic or molecular dipoles of many materials align in
such a way that the resulting polarization density vector
Pi is proportional to Ei, as seen[7] in Equation 1.

Pi = ϵ0χ
(1)
ij Ej (1)

Although χij is a rank-2 tensor in general, for isotropic
materials we can write χij = δijχe, with scalar χe. This
response differs, however, with the structure of the mate-
rials to which the electric field is applied. Non-linear ma-
terials demonstrate polarization that depends on higher-
order terms, as described[8] by the following series ex-
pansion:

Pi =
∑
n≥1

P
(n)
i = ϵ0χ

(1)
ij Ej + ϵ0χ

(2)
ijkEjEk + · · · (2)

The study of second order nonlinear optics is simply the

investigation of materials that have negligible P
(n)
i for

n ≥ 3. In particular, when a beam of monochromatic

light of frequency ω travels through a second order non-
linear dielectric, part of it will be converted into light of
frequency 2ω via radiation generated by the oscillating
dipoles in the material. This process is called frequency
doubling, or second harmonic generation (SHG). Al-
though conceptually simple, very high irradiance beams
are required to observe the nonlinearity effect, which
means lasers must be used to study SHG. To analyze
this effect further, assume the electric field of the laser
is a plane wave with frequency ω1 propagating in the x̂
direction and polarized along the z direction:

E⃗1 = E⃗(ω1)e
−iω1t + E⃗(−ω1)e

iω1t =

A⃗(ω1)e
i(k1x−ω1t) + A⃗(−ω1)e

−i(k1x−ω1t) (3)

The polarization condition implies Ax = Ay = 0, so from
now on we consider E and A to be the z components of
the corresponding vector quantities. Using Equation 2,

we find an expression for P
(2)
i :

P
(2)
i = ϵ0χ

(2)
i33

(
E(ω1)e

−iω1t + c.c.
)2

(4)

If we let P =
∑

n∈Z P (ωn)e
−iωnt, we find that for appro-

priate deff we can write |P⃗ (2)(2ω1)| = P (2)(2ω1) as:

P (2)(2ω1) = 2ϵ0deffE(ω1)
2

(5)

Since the wave propagates along x, and only the z com-
ponents of the fields are of interest, we can investigate
the problem using the one-dimensional in-homogeneous
wave equation for a lossless and dispersionless medium:

∂2E2

∂x2 − n2
2

c2
∂2E2

∂t2
= µ0

∂2P
(2)
2

∂t2
(6)

Where the subscript 2 refers to the doubled frequency
(e.g. ω2 = 2ω1). If we assume the amplitudes are slowly
varying compared to the actual oscillations, we can use
the slowly varying envelope approximation (SVEA) to
neglect the second derivatives of the electric field ampli-
tudes in Equation 6:∣∣∣∣d2A(2ω1)

dx2

∣∣∣∣≪ ∣∣∣∣k2 dA(2ω1)

dx

∣∣∣∣ (7)
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Thus, using n2
2ω

2
2/c

2 = k22 and this approximation:

∂2E2

∂x2
− n2

2

c2
∂2E2

∂t2
= ei(k2x−ω2t)

(
∂2A(2ω1)

∂x2
+

2ik2
∂A(2ω1)

∂x
− k22A(2ω1)

)
+

n2ω2
2A(2ω1)

c2
ei(k2x−ω2t) =

ei(k2x−ω2t)

(
∂2A(2ω1)

∂x2
+ 2ik2

∂A(2ω1)

∂x

)
=

ei(k2x−ω2t)2ik2
∂A(2ω1)

∂x
= µ0

∂2P
(2)
2

∂t2
(8)

If we take the time derivative of P
(2)
2 = e−iω2tP (2)(2ω1):

∂2P
(2)
2

∂t2
= −2ω2

2ϵ0deffA(ω1)
2ei(k2x−ω2t) (9)

Plugging this expression back into Equation 8 and rear-
ranging, we obtain:

∂A(2ω1)

∂x
=

ideffω2

n2c
A(ω1)

2ei(2k1−k2) (10)

While second harmonic generation is the main focus of
this experiment, it should also be noted that second or-
der polarization can lead to other frequency-modifying
processes. For example, consider a laser that contains
two components of different frequencies ω1 and ω2 in the
scalar field approximation, as in Equation 11.

E = E1(ω1)e
−iω1t + E2(ω2)e

−iω2t + c.c. (11)

Assuming P (2)(t) = ϵ0χ
(2)E2(t) (scalar field approxima-

tion), the second order polarization is given by Equation
12.

P (2) = 2ϵ0χ
(2)[E∗

1E1 + c.c.]+

ϵ0χ
(2)[E2

1e
−2iω1t + E2

2e
−2iω2t + 2E1E2e

−i(ω1+ω2)t+

2E1E
∗
2e

−i(ω1−ω2)t + c.c.] (12)

As this equation shows, the polarization has components
with the doubled frequencies as well as components with
frequencies that are the sum and difference of the laser’s
original constituent frequencies. The additive and sub-
tractive processes are called, respectively, sum-frequency
generation (SFG) and difference-frequency generation
(DFG). These second-order processes are summarized in
Table I. Sum-frequency generation can be used to pro-
duce tunable ultraviolet light by inputting a combination
of a fixed frequency visible laser and a tunable frequency
visible laser into a non-linear medium. The same can be
done to produce tunable infrared light using difference-
frequency generation [6].

B. Phase Matching

In order for the second harmonic generation process to
produce frequency-doubled radiation at an appreciable

TABLE I: Summary of Second-order Non-linear Optical
Processes

Process Frequency Amplitude

SHG 2ω ϵ0χ
(2)E2

SFG ω1 + ω2 2ϵ0χ
(2)E1E2

DFG ω1 − ω2 2ϵ0χ
(2)E1E

∗
2

power, it is necessary for the interacting optical fields to
interfere constructively. The difference in phase velocity
between the polarization field and the frequency-doubled
field it generates leads to an increasing phase disparity
and to destructive interference. The phase velocity dif-
ference results from the material’s frequency-dependent
index of refraction. Naturally, phase matching is a con-
cern for SFG and DFG as well, but only the phase match-
ing conditions in the SHG case will be described here. If
the initial plane wave E1 that leads to the polarization
has a frequency of ω1, its wavevector in the non-linear
material is k1 = n1ω1/c. This wave forces a polariza-

tion wave P
(2)
1 with frequency ω2 = 2ω1 and wavevector

2k1, which, because it is forced by E1, is determined by
n1, the index of refraction at frequency ω1. The free
second harmonic wave E2 radiated by the polarization
has wavevector k2 = n2ω2/c, which is determined by n2,
the index of refraction at frequency ω2. The phase shift

between P
(2)
1 and E2 reaches π after a distance

lc =
π

k2 − 2k1
=

λ

4 (n2 − n1)
(13)

This equation gives the coherence length lc and empha-
sizes that the phase shift is the result of the index of re-
fraction n being frequency dependent. Beyond lc, the po-
larization and second harmonic waves interfere destruc-
tively. The direction of power flow is determined by the

phase shift between P
(2)
1 and E2, and it changes sign

every coherence length. Without phase matching, there
is no increase in average power across the length of the
non-linear material.
A perfectly phase-matched interaction involves the

complete elimination of the phase shift. In this case, the
power flows in one unchanging direction, and it increases
across the length of the material (remember that P is
the polarization density). One approach to eliminating
the phase shift is birefringent phase matching (BPM),
where the material has indices of refraction dependent
on the direction of the polarization of the optical fields,
and this dependency is leveraged to compensate for the
phase shift. Careful manipulation of the angles between
the crystal’s optic axes and the direction of propagation
of incident light is one approach to BPM. There are two
important limitations to BPM. The first is the require-
ment for the non-linear material to have birefringence,
and there are in fact non-linear materials that have no
birefringence [6]. The second limitation is that the bire-
fringence, that is, the disparity of refractive indices be-
tween ordinarily and extraordinarily polarized light, may
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not be sufficient to compensate for the disparity in refrac-
tive indices at different frequencies. Essentially, BPM
limits phase matching to certain materials and certain
frequencies.

Another method to deal with the phase mismatch
between the polarization and second harmonic fields is
quasi-phase matching (QPM). In QPM, the sign of the
non-linear susceptibility χ(2) is inverted every coherence
length lc, so that the phase of the polarization field imme-
diately increases by π and the phase shift is ”reset.” This
ensures that, although the phase shift is not eliminated,
the polarization and second harmonic fields will never
interfere destructively. The inversion of χ(2) is accom-
plished in fabrication, for example, by assembling a se-
ries of wafers of non-linear material, each having a width
lc, and rotating every second wafer 180◦. In ferroelectric
crystals, QPM is done by creating domains of periodi-
cally reversed spontaneous polarization [9]. Quasi-phase
matching can be represented as setting the non-linear
coupling d(z) to a square wave, where the sign is in-
verted every Λ/2 across the non-linear material. Λ is
called the poling period, and it is chosen based on the
coherence length of the second-order process the mate-
rial is designed for: Λ = 2mlc where m is an odd integer,
the order of quasi-phase matching.

d(z) = deffsign[cos

(
2πz

Λ

)
] (14)

This can be written as Fourier series

d(z) = deff

∞∑
m=−∞

2

mπ
sin (mπ/2)eikQmz (15)

where kQm = 2πm/Λ. Assuming a particular m term
in this series dominates, and making a slowly varying
amplitude approximation, the wave equation becomes

∂A(2ω1)

∂x
=

iω2dm
n2c

A(ω1)
2ei∆kQz (16)

where dm = deff
2

mπ sin (mπ/2) and ∆kQ = 2k1 − k2 +
kQm. For first-order (m = 1) QPM, where the material
is inverted every coherence length, the non-linear cou-
pling is d1 = (2/π)deff, meaning the efficiency of SHG
is reduced by a factor of 2/π compared to perfect phase
matching. Despite the reduction in efficiency, QPM is
unfettered by the limitations of BPM: It allows efficient
SHG at a wider range of frequencies, it can be realized
in any material into which periodic inversion can be fab-
ricated, birefringent or not, and it allows the respective
polarizations of incident and second harmonic fields to be
chosen freely, allowing access to any non-linear coefficient
in the susceptibility tensor.

C. Applications of SHG

As with the other non-linear processes, SHG can pro-
vide access to tunable light at frequency ranges that

FIG. 1: Diagram of SHG Apparatus

could otherwise be inaccessible. SHG allows the gener-
ation of frequencies that are either impossible or very
expensive to create by doubling frequencies that are
cheaper and more readily available. In situations where
high amounts of power at a specific frequency are needed,
it may be easiest or necessary to use SHG rather than
producing light at that frequency directly. In particular,
SHG is used to double the frequency of 1064 nm light
into green 532 nm light in laser pointers, and to create
high power 780 nm lasers from 1560 nm input for use in
experiments with low-temperature rubidium atoms. The
780 nm wavelength is important for these experiments
because it is the wavelength of rubidium’s D2 transition
[10].

II. APPARATUS

The experimental apparatus is designed to send a diode
laser at nominal wavelength 1560 nm through a peri-
odically poled lithium niobate (PPLN) crystal in order
to produce light at a wavelength of 1560/2 = 780 nm.
The frequency doubled light is then separated from the
1560 nm wavelength laser light when the two optical
fields encounter a long-pass dichroic mirror which reflects
780 nm light and transmits 1560 nm light. Finally, the
780 nm light is measured by a calibrated optical power
meter. The components are listed in the order they be-
come involved in the experimental process. The entire
apparatus is depicted in Figures 1 and 2.

A. 1560 nm Diode Laser

A current drives a diode laser which is output by an
optical fiber. The laser is connected to a temperature
and current controller (Figure 3). The controller, allows
the current driving the laser to be set with 0.1 mA pre-
cision, allows the temperature to be set with 0.01 ◦C
precision, enables and disables feedback cooling, and al-
lows the laser to be turned on or off by a button and
lock. The laser is capable of power up to 20 mW, and its
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FIG. 2: Photograph of SHG Apparatus

FIG. 3: Oven temperature controller (top) and laser
temperature and current controller (bottom).

driving current can be up to 128.00 mA. The feedback
cooling was enabled for the entire duration of the ex-
periment to prevent the laser from overheating, and the
laser temperature remained in the 20–35 ◦C range. Both
the current and the temperature have a measurable influ-
ence on the frequency of the laser, with the temperature
control allowing the laser’s frequency to be tuned. The
laser’s wavelength changes by 0.1 nm per degree Celsius.

B. Half Waveplate

The first component encountered by the laser is a half
waveplate. This waveplate polarizes the laser linearly at
various angles. The waveplate is capable of rotating in a
complete circle, and lines on its cylindrical surface mark
every 2 degrees. The PPLN crystal transmits light de-
pending on the vertical component of the incident light,
so the waveplate angle and the polarization angle corre-
sponding to it have a significant effect on the intensity of
the second harmonic field. This effect will be explained
in detail in Section IV.

C. First Lens

After the laser passes through the waveplate and
becomes polarized, it encounters a lens that is anti-
reflection coated for 1560 nm light. This lens focuses
the laser so that it becomes narrowest at the center of
the PPLN crystal.

D. Oven and PPLN Crystal

The PPLN crystal, created by Covesion, is mounted
in a temperature-controlled oven, which is on a transla-
tion stage. The oven includes a heater with a variable
3.6−15 W power rating and a PT100 resistance temper-
ature sensor. It is cabled and connected to a temperature
controller, shown in Figure 3. Using the controller, the
temperature can be set with .01 ◦C precision. The oven
and crystal can tolerate temperatures up to 200 ◦C and
changes in temperature less than 25 ◦C per minute. Pe-
riodically poled lithium niobate is an engineered, quasi-
phase matched, and non-linear ferroelectric crystal. The
orientation, and thus the polarization, of the crystal is
periodically inverted. The particular crystal in this ex-
periment is a 40 nm 5% MgO doped PPLN crystal. The
second-order polarization of lithium niobate is given by
Equation 17[11].


P

(2)
x

P
(2)
y

P
(2)
z

 = 2


0 0 0 0 d31 −d22

−d22 −d22 0 d31 0 0

d31 d31 d33 0 0 0





E2
x

E2
y

E2
z

2EzEy

2EzEx

2ExEy


(17)

Where the 2D matrix contains the same information as
the susceptibility tensor χ(2), but there are are much less
components due to various symmetry conditions. The
MgO:PPLN crystal typically has an effective non-linear
coefficient deff = 14pm/V. The refractive index of the
crystal varies with frequency and the temperature of the
crystal. The refractive index is given by a temperature
dependent Sellmeier equation.

n2
e = a1+b1f+

a2 + b2f

λ2 − (a3 + b3f)2
+
a4 + b4f

λ2 − a25
−a6λ

2 (18)
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TABLE II: MgO:PPLN Sellmeier Coefficients

a1 5.756

a2 0.0983

a3 0.2020

a4 189.32

a5 12.52

a6 1.32E-2

b1 2.860E-6

b2 4.700E-8

b3 6.113E-8

b4 1.516E-4

The equation pertains to extraordinarily polarized light,
as having all the optical fields e-polarized realizes the
greatest SHG efficiency. λ is given in micrometers. f
is the temperature dependent parameter, where T is the
temperature in degrees Celsius.

f = (T − 24.5)(T + 843.97) (19)

The Sellmeier coefficients are given in Table II. Ordinar-
ily, the high indices of refraction for the crystal would
lead to significant losses due to reflection, but the input
and output facets of the PPLN crystal are anti-reflection
coated, so reflection is kept below 1% at each end. Un-
doped PPLN has slightly different Sellmeier coefficients
compared to the MgO:PPLN crystal used in this exper-
iment. The addition of 5% MgO to PPLN maintains a
high non-linear coefficient while providing increased op-
tical and photorefractive resistances, allowing for higher
damage thresholds and the ability to use the crystal at
temperatures below 100 degrees Celsius.

E. Second Lens

The second lens is AR coated for 780 nm light and fo-
cuses the two free optical fields emerging from the PPLN
crystal.

F. Long-pass Dichroic Mirror

The long-pass dichroic mirror is used to separate the
1560 nm laser from the 780 nm light generated in the
crystal. The longer wavelength of light is transmitted
through this mirror, but the second harmonic light is
reflected.

G. Power Meters

Two identical, highly sensitive power meters are used
to measure the power of the light as each frequency of
light completes its path through the apparatus. The

FIG. 4: Power Meter 1 (right) and 2 (left)

power meters include settings like range of power de-
tected, measurement representation, units, and wave-
length entry. Power Meter 1 was set to measure 1560 nm
light and displayed power in units of milliwatts with
.01 mW precision. Power Meter 2 was set to measure
780 nm light in units of microwatts, with .01 µW preci-
sion. The power meters are shown in Figure 4.
Over the course of the experiment, the apparatus has

stayed largely unaltered. Power Meter 1, however, was
added only when the effect of the magnitude of current
on the output power was being measured. This was done
so that the power of first harmonic light could also be
related to the amount of current driving the laser, and
that the power of 1560 nm and 780 nm light could be
compared.

III. MEASUREMENTS AND DATA ANALYSIS

The task of the experiment is to measure the effects of
affecting several parameters on the power and efficiency
of second harmonic generation. Such parameters include
the polarization of the incident light, the amount of cur-
rent driving that light, the temperature of the PPLN
crystal, and the temperature of the laser. Measurements
of the power of second harmonic light as these parame-
ters are varied give insight about the SHG process and
allow it to be optimized to achieve the greatest level of
efficiency.

A. Waveplate Angle/Incident Light Polarization

The particular PPLN crystal used to double the fre-
quency of 1560 nm laser light causes the amount of SHG
light produced to depend on the vertical component of
the incident light. The half waveplate encountered by
the laser before it is focused into the crystal polarizes
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the laser linearly, with the angle at which the light is
polarized being twice the angle of the waveplate. To
achieve the highest power measurement by Power Me-
ter 2, the current on the laser controller was set to the
maximum 128.0 mA. The crystal temperature was set to
104.50◦ C, and the laser temperature to 24.20 ◦C. 150
data points over 5 trials investigating the relationship
between waveplate angle and second harmonic power are
summarized in Figure 5. From theory, we expect the
doubled power Q2ω to relate to the polarization angle
θ by Q2ω ∝ sin4(2θ). This is because Q2ω ∝ A2

2ω and
A2ω ∝ A2

ω from Equation 10 (assuming constant Aω).
Moreover, Aω ∝ sin(2θ) by the working principles of a
half waveplate.

Since we always measured power at the exact same
polarization angles, the 5 trials were combined into one
data set, and the standard deviation was taken into con-
sideration in the model fitting process. Specifically, we
fit models that minimize the χ2 statistic in Equation 20,
where y, x, σ are the model’s output, observed data, and
standard deviation, respectively.

χ2 =
∑
i

(yi − xi)
2

σ2
i

(20)

We three different models and confirm that the sin4(2θ)
has the smallest χ2, as expected.

B. Laser Current

The current has a notably complex effect on the sec-
ond harmonic output power. Not only does the power
depend on the square of the current, but the current
also affects the frequency of the diode laser. Because the
power meters measure the power at specific frequencies,
and deviations from the wavelengths for which the PPLN
crystal is designed leads to a loss in efficiency, changing
the current results in power measurements that are af-
fected by changes in both current and laser frequency.
Our series of measurements allows for this complication,
and that’s why the effect of laser current on second har-
monic power does not really fit a power law (as would be
expected if the laser frequency didn’t drift with current).
Determining that the angle producing the highest second
harmonic power is roughly 357 degrees, the waveplate re-
mained at that optimal angle. The crystal temperature
was increased to 105.60 ◦C, while the laser temperature
remained at 24.20 ◦C. The effects of laser current, as set
by the laser controller, on both the 1560 nm power and
second harmonic power, were then measured. We did 85
measurements over 5 trials, as shown in Figure 7.

C. Input Power and Doubled Power

To change the input power we need to change the laser
current. However, if we only did that, we would run into

(a) A = 2.13± 0.05, B = 1.97± 0.02, C = −1.47± 0.05

(b) A = 2.23± 0.02, B = 2.02± 0.01, C = −1.49± 0.02

(c) A = 2.26± 0.04, B = 2.02± 0.02, C = −1.51± 0.03

FIG. 5: Data and the corresponding best fit curves for
the model represented by Q(θ) = A sinn(Bθ + C)
(n = 2, 4, 6, respectively). Error bars represent the
standard deviation across the 5 measurement trials.
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(a) A = 0.01249± 0.00001

(b) A = 0.01255± 0.00001

(c) A = 0.01255± 0.00002

(d) A = 0.01255± 0.00002

FIG. 6: Data and the corresponding best fit curves for
the model represented by Qout = A ·Q2

in. Each plot
represents one of the four trials done for this

experiment.

FIG. 7: Data and corresponding best fit curves for the
model represented by Qout = A · I4in. Each plot

represents one of the four trials.
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the same problems as in the previous section. A better
way to quantify how the 1560 nm laser power affects the
780 nm power is to adjust input power while simultane-
ously adjusting the laser temperature to maximize the
doubled power for each specific data point. By doing
this, we guarantee, to an approximation, that the fre-
quency will be the same across all measurements. For
this procedure, we used both power meters (one for the
input power, one for the doubled power). In total, 86
points of data over 4 trials were collected. The results
are summarized in Figure 6. Beyond the Qout ∝ Q2

in, we
also tried to fit higher order polynomials and observed
that all but the Q2

in coefficients were negligibly small.
This fact, combined with the extremely low χ2 values for
the quadratic fit support the theoretical prediction. We
combined the trials using the arithmetic mean of them.
The uncertainty in the mean as σ/

√
N , where σ is the

standard deviation of the individual uncertainties and N
is the total number of trials. For Qout in µW and Qin in
mW, we obtain the experimental result in Equation 21.

Qout = (0.012541± 0.000002)Q2
in (21)

D. PPLN Crystal Temperature

At the optimal current, the laser temperature that
maximized the second harmonic power was found to be
approximately 25.91◦C, so the laser temperature was set
to that value while the effects of the crystal temperature
were measured. The current remained at its maximum
and the waveplate angle at 357 degrees. Under these
conditions, the effects of the crystal temperature, as set
by the oven controller, were investigated. Although the
crystal has a wide range of temperatures it can toler-
ate, the rate at which the temperature is changed and
the amount of time required for the roughly 400 mm3

crystal to thermalize completely were important consid-
erations. Attempts to change the temperature well be-
low and above its usual 100 to 110 degrees led to several
very imprecise measurements unworthy of inclusion in
this report, but they did indicate an area of interest in
the relatively narrow 100 to 110 degree range. Focusing
on that range, each measurement was made after allow-
ing five, and later four, minutes to pass, during which
the crystal thermalized to the temperature set on the
oven controller. The 5 trials and 96 measurements of sec-
ond harmonic power over the ten degree range of crystal
temperatures are summarized in Figure 8. In fact, it is
difficult to model the effect of the crystal temperature
with any simple function. Near the maximum power,
though, the temperature affects output power in an ap-
proximately Gaussian manner. To judge our experimen-
tal results, we use the theoretical prediction of the full
width at half maximum (FWHM) given by Equation 22,
which was derived by Fejer et al.

δT =
0.4429λ

L

∣∣∣∣∂∆n

∂T
+ α∆n

∣∣∣∣−1

(22)

For this experiment λ = 1560nm, ∆n = n780 − n1560

(taken from Equation 18), L = 40mm, and the coefficient
of linear thermal expansion is α = L−1 ∂L

∂T ≈ 10−5. The
final theoretical prediction is then:

δT = 1.51 ◦C (23)

We can compare it to our best estimate of the FWHM:

δT = 2.9± 0.1 ◦C (24)

E. Laser Temperature and Frequency

The optimal temperature for the PPLN crystal was
found to be 105.00 ◦C, so the crystal remained at that
temperature during the investigation of laser tempera-
ture. The waveplate angle remained at 357 degrees and
the input current at 128.0 mA. The laser temperature
is selected by the laser controller, and it is a quantity
of interest because it affects the laser’s frequency. As
previously mentioned, the laser’s wavelength changes by
0.1 nm per degree Celsius. The frequency affects the
output power due to both the power meter measuring
at a specific frequency and its effect on the phase shift
and therefore the efficiency of SHG. Unlike the crystal
temperature, the laser temperature requires much less
time to stabilize, so measurements of power were made
almost immediately after the temperature was set. Mea-
surements were constrained to the 20 to 35 degree range.
The 5 trials and 93 measurements are summarized in Fig-
ure 9 As with the effects of the crystal temperature, the
data involving the laser temperature is not conducive to
a single simple function, but it shows Gaussian character
near the maximum power.

δλ =
0.4429λ

L

∣∣∣∣n780 − n1560

λ
+

∂n1560

∂λ
− 1

2

∂n780

∂λ

∣∣∣∣−1

(25)
Similarly to the Crystal Temperature investigation, the
FWHM calculated by Fejer et al. for the wavelength is
given by Equation 25. At λ = 1560 nm, the predicted
FWHM is:

δλ = 0.288 nm (26)

Moreover, our experimental results indicate:

δλ = 0.299± 0.003 nm (27)

Which is consistent with the theoretical prediction.

IV. DISCUSSION

The dependence of second harmonic power on the pa-
rameters of interest can be predicted from the ampli-
tude of second harmonic light given by Equation 16 for
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FIG. 8: Data and FWHM for the Gaussian region of the
plots. Predicted FWHM calculations used Equations 18

and 22. Each plot represents one of the four trials.

FIG. 9: Data and FWHM for the Gaussian region of
the plots. λ is the wavelength offset from an estimated
1560 nm at 21.00 ◦C. Predicted FWHM calculations
used Equations 18 and 25. Each plot represents one of

the four trials.
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m = 1, since the PPLN crystal is first-order quasi-phase
matched, with the wavevectors k1 = n1ω1/c determined
by the indices of refraction, which in turn are given by
the Sellmeier equation (18). The accuracy of all the data
is impacted by the assumption in the theory that the
laser is uniform through the length of the PPLN crystal.
In fact, it is focused, becoming narrowest at the center of
the crystal, giving the crystal an effective length less than
its physical 40 mm length. Another assumption is that
the diode laser is perfectly monochromatic. Other factors
limiting the accuracy of all data include the amount of
data collected, slight shifts in background light affecting
measurements of power, and the high sensitivity of the
power meters.

Although the sensitivity of the power meters is con-
ducive to precise measurements, it also leads to varia-
tions in power measurements in ways conflicting with
theoretical predictions. An example is rapidly turning
the waveplate several full rotations so that the waveplate
returns to its original orientation. Despite the fact that
angle remains the same before and after the rotations,
the power that is measured will be significantly different,
owing to this high sensitivity.

A. Angle Dependence

The angle of the linearly polarized light exiting the
half waveplate is twice the angle of the waveplate. As
previously mentioned, the PPLN crystal is designed to
output second harmonic light in proportion to the ver-
tical component |E1 cos 2θ| of the incident light, where
θ is the waveplate angle. The amplitude of the second
harmonic light, being produced by a second-order po-
larization due to this vertical component, is then pro-
portional to (E1 cos 2θ)

2
. Finally, the power measured

by the power meter is quadratically related to the SHG
amplitude. The theoretical prediction for the angle de-
pendence of second harmonic power is then

Q(θ) = Kθ cos
4 (2θ) (28)

where Q is the power and Kθ is a constant involving the
frequencies, coefficients and length of the PPLN crystal,
and the fourth power of the amplitude of the incident
light.

The results of the experiment are consistent with this
theory insofar as the angle dependence is best represented
as the fourth power of a sinusoidal function. This type
of function matched the data significantly more closely
than other even exponents of the sine function. The ex-
perimental angle dependence equation is

Q(θ) = 2.23 sin4 (2.02θ − 1.49) (29)

where Q is in µW and θ is in radians. The coefficients
have uncertainties given by 2.23± 0.02, 2.02± 0.01, and
−1.49± 0.02, respectively.

This equation is consistent with the theoretical predic-
tion from Equation 28, with the phase of the function

being slightly different (1.49 compared to the expected
1.57 radians) and the B term slightly above the expected
2.00. Higher amplitudes for power, as have been seen
in the laser current and temperature measurements, are
possible for this apparatus, but since the angle was the
first parameter measured, temperature optimizations had
not yet been determined. It was found that the 24.20
degree laser temperature was sub-optimal for the oven
temperature and current during the angle dependence
measurements. The precision of waveplate angle selec-
tion was limited to 2 degrees, the interval at which each
mark on the waveplate was placed.

B. Laser Current and Input Power Dependence

Aside from the effect of the laser current on its fre-
quency, theory predicts a quadratic relation between the
amplitude and the power of the 1560 nm light as it ex-
its the PPLN crystal Qin ∝ A2

1, and since A2 ∝ A2
1, the

power of second harmonic light Qout ∝ A2
2 is proportional

to the square of the power of 1560 nm light.

Qout ∝ Q2
in (30)

The dependence of laser amplitude on the driving cur-
rent is complex. Of course, it is reasonable to predict
that increases in current lead to increases in amplitude,
and this has been experimentally shown, but the precise
relation is unknown. The guess used to model the data
in Figure 7

Qout ∝ I4in (31)

follows from the largely random assumption that A1 ∝
Iin. The experimental current dependence of second har-
monic power (Figure 7) is inconsistent with the predic-
tion in Equation 31. As previously mentioned, the drift
in laser frequency with changes to current is the primary
cause. As seen in Figure 9, the frequency drift introduces
an approximately Gaussian element to the relation, so
the data in Figure 7 is the result of some unknown rela-
tion between laser amplitude and current, combined with
the (mostly) Gaussian wavelength dependence.
The experimental results in Figure 6 match the the-

ory and show high internal consistency. Attempting to
model the data with cubic and quartic functions resulted
in quadratic coefficients much higher than the cubic or
quartic, so it is evident the data matches the prediction of
Equation 30. The average of the quadratic fit equations
relates the output power to the input power as

Qout = (0.012541± 0.000002)Q2
in (32)

where Qout is in µW and Qin in mW. The accuracy
of these measurements is limited by the different end-
ing locations for the 1560 nm and 780 nm light, which
may have lead to a slight difference in background light
between the two locations. Of course, the influence of



11

current on frequency is also an accuracy-limiting factor
that may not have been completely compensated for by
the adjustments in temperature. Another difficulty with
parameters affecting frequency is the fact that it is un-
known exactly how deviations of the wavelengths from
those specified on the power meter affect the amount of
power detected.

C. PPLN Crystal Temperature

Deviations from ideal QPM conditions lead to subop-
timal power output in SHG [9]. For example, adjusting
the temperature of the crystal results in different refrac-
tive indexes for the travelling light, which in turn affects
the coherence length described in Equation 13. More-
over, thermal expansion affects the period Λ and length
L of the crystal. Since these parameters must follow very
strict relationships for QPM to work, determining the
tuning properties and acceptance bandwidth for temper-
ature in SHG is critical if we want to maximize the fre-
quency doubled power.

In our experiment, we found that the FWHM was
δT = 2.9 ± 0.1 ◦C. On the other hand, using theo-
retical predictions from Equation 24 we would expect
δT = 1.51 ◦C. This difference could be explained by
the fact that theory assumes the laser propagates as a
plane wave, while in reality the envelope is closer to a
gaussian beam. In other words, the power away from
the center of the crystal is much weaker than we esti-
mate it to be, so there’s a larger margin for temperature
variations that will not impact the total power output
very much. Another effect that might account for some
of this difference is the possibility that we didn’t wait
enough time for the crystal to thermalize after changing
its temperature. We might have recorded a larger tem-
perature variation than what the crystal actually went
through. We believe, however, this would account for a
minimal contribution given that we always waited until
the output power was reasonably stable before recording
its value.

D. Laser Temperature and Frequency

Similarly to how crystal temperature can affect the
QPM conditions, changing the fundamental wavelength
of the laser λ will affect the indexes of refraction di-
rectly, and phase matching will not be ideal. Across
all 4 trials, we measured the FWHM related to wave-
length consistently, resulting in the experimental value of
δλ = 0.299 ± 0.003 nm. This is in good agreement with
the expected δλ = 0.288 nm, although it’s outside the
uncertainty interval that we calculated. Beyond system-

atic errors and the problems with the plane assumption
we discussed, one possible reason for the slight disagree-
ment is that in the derivation of Equation 25, Fejer et al.
expand ∆k as a function of λ, but they drop all terms
with order higher than 1. It’s possible that the contri-
bution from these terms is significant enough to generate
the small disagreement between experiment and theory.

V. CONCLUSION

In this experiment, we observed SHG from a PPLN
crystal excited by a 1560 nm laser. We have investi-
gated the phenomena from different perspectives, and
confirmed with reasonable certainty that various theoret-
ical predictions were correct. Each of our 5 experiments
yielded a final expression that summarizes the data.
Polarization Angle Dependence:

Q(θ) = 2.23 sin4 (2.02θ − 1.49) (33)

Input Power Dependence:

Qout = (0.012541± 0.000002)Q2
in (34)

Crystal Temperature Bandwidth:

δT = 2.9± 0.1 ◦C (35)

Laser Wavelength Bandwidth:

δλ = 0.299± 0.003 nm (36)

Using these equations we validated that: 1) the fre-
quency doubled power depends on the fourth power of the
sine of the polarization angle; 2) the frequency doubled
power depends on the square of the input power; 3) the
laser frequency acceptance bandwidth is approximately
given by Equation 25. We also had results regarding the
crystal temperature dependence, and although the theo-
retical predictions were close, there was significant differ-
ence between the two. Perhaps, the theoretical deriva-
tions would be more accurate if we made them under the
assumption of a gaussian beam. Waiting more time for
the crystal to thermalize after changing its temperature
could also improve the results. In addition to that, we
could make a better use of the data collected on the laser
current dependence investigation if we had a model of the
frequency drifting aspect. In this sense, a better mathe-
matical description would improve our methodology. Be-
yond these improvements, it is clear that collecting more
data would allow for more statistical significance. More-
over, being mindful of the impacts of background lighting
and proper handling of the equipment could help reduc-
ing systematic errors. This is especially true for the angle
dependence data, in which we had some trouble keeping
the waveplate in place.
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