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Analysis of the optical spatial filtering done by a converging, spherical lens was conducted in
order to gain a better understanding of the Fourier transform properties of lenses. Using a camera,
both transform and image planes were recorded for a beam passing through several different mesh
patterns. These pictures were further analyzed and compared against computer generated pictures
of Fourier transforms for the same mesh patterns.

I. INTRODUCTION

Ray optics is a model of optics that describes prop-
agation of light in terms of rays. Such a model is a
convenient tool for determining imaging characteristics,
including the location of the image and its magnifica-
tion. In order to achieve a more complete description
and deeper understanding of an imaging process, how-
ever, it is necessary to consider the wave-like properties
of light. Phenomena such as diffraction and interference
are responsible for the resolution of optical devices, image
contrast, and the effect of spatial filters. In order to take
these properties and phenomena into account, it is often
useful to think of light, or electromagnetic fields, travel-
ing through free space as a superposition of plane waves
propagating at different angles. Looking at these fields
through this perspective requires certain mathematical
tools like the Fourier transform. The Fourier transform
of a field allows us to determine the relative contribu-
tions of each of the planes waves in the superposition
and, therefore, observe the transmission of each spectral
component through the optical system separately. This
is usually referred to as the Fourier space representation
of the electromagnetic field. More generally, the use of
plane-wave decompositions and Fourier transforms in the
analysis of optical systems is known as Fourier Optics.

A. Spatial Fourier Transforms

If we consider a two-dimensional object such as a slide
which has a field transmission function f(x, y) then this
function carries information of the object [1]. An equiv-
alent description of this object in Fourier space is based
on the object’s amplitude spectrum given by:

F (u, v) =
1

(2π)2

∫ ∫
f(x, y)e2πiux+2πivydxdy (1)

Where the variables u and v have units of inverse
length and are called the spatial frequencies. F (u, v)
is the Fourier transform of f(x, y). If a plane wave of
amplitude E0 were to travel through the object, the
field distribution immediately behind the object would
be E(x, y) = f(x, y)E0, meaning that the object informa-
tion would be imprinted onto the light wave. There are
optical processes that can produce the Fourier transform

of E(x, y) and the object function as will be discussed
next.

B. Optical spatial filtering of light

If we think of light traveling through space as a super-
position of planes waves, as it is transmitted through a
lens, this lens will focus each of the plane waves to a dif-
ferent spot in the focal plane which results in a spectrum
of spatial frequencies also known as the Fourier spectrum.

In order to better understand this phenomena, let’s
consider a plane wave of complex amplitude U(x, y, z) =
Aei(kxx+kyy+kzz) with wave vector k = (kx, ky, kz), wave-

length λ, wave number k = (k2x+k2y+k2z)
1/2 and complex

envelope A. The vector k makes angles θx = sin−1(kx/k)
with the y-z plane and θy = sin−1(ky/k) with the x-z
plane. This is shown in Figure 1.

FIG. 1: Plane wave traveling from the left at angles θx =
sin−1(λvx) and θy = sin−1(λvy). Its harmonic function
at z = 0 has spatial frequencies vx and vy. Figure sourced

from the Lab Guide.

At z = 0, the complex amplitude, U(x, y, 0), is a spa-
tial harmonic function f(x, y) = Ae2iπ(vxx+vyy) and with
spatial frequencies vx = kx/2π and vy = ky/2π. There-
fore, the angles of the wave vector are related to the
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spatial frequencies of the harmonic function by

θx = sin−1 λvx, θy = sin−1 λvy (2)

For this harmonic function, we can recognize the spa-
tial periods to be Λx = 1/vx and Λy = 1/vy in the x
and y directions respectively. If we use these periods to
rewrite θx and θy, then we can see that these angles de-
pend on the ratios between the wavelength λ and the
respective spatial period Λ (For θx we get an expression
of the form: θx = sin−1(λ/Λx)). These geometrical rela-
tions follow from matching the wave fronts of the wave
to the periodic pattern of the harmonic function in the
z = 0 plane. In the small angle approximation, θx ≈ λvx
and θy ≈ λvy where we can see that these angles of incli-
nation of the wave vector are directly proportional to the
spatial frequencies of the corresponding harmonic func-
tion.

We can separate the wave plane components in a sin-
gle wave by using a spherical lens which transforms the
plane wave into a paraboloidal wave focused to a point
in the lens focal plane. If this wave intersects the lens at
angles θx and θy, the paraboloidal wave will be centered
about a point (θxf, θyf) where f is the focal length as
seen in Figure 2. Therefore, the lens focuses each plane
wave within the wave onto a specific point in the focal
plane, spatially separating each one of them and the con-
tributions of their spatial harmonic functions.

FIG. 2: Representation of the process of focusing a plane
wave into a single point on the transform plane. A plane
coming in from the left at angles θx and θy is mapped
onto a point (x, y) = (θxf, θyf). Figure sourced from the

Lab Guide.

Now, let’s explore how this spatial filtering occurs in
our laboratory setup which is described in Figure 3. An
optical wave comes in from the left with complex ampli-
tude f(x, y, z) in the x-y plane. It can be described as a
superposition of plane amplitude waves with each wave
component traveling at angles θx = λvx and θy = λvy,
and with complex amplitudes proportional to the Fourier
transform of f(x, y, 0): F (vx, vy).
As they travel through the mesh object and the trans-

form lens, each of these plane wave components is then
focused by the lens to a unique point in the focal plane
which is at a distance f from the lens. At this point,

FIG. 3: Visual representation of how the Fourier trans-
form can emerge from a thin converging lens. The trans-

form plane is simply the focal plane of the lens.

the complex amplitude of the wave is proportional to the
Fourier transform of f(x, y, 0) evaluated at vx = x/λf
and vy = y/λf which gives us the following:

f(x, y, z = f) ∝ F ( x
λf ,

y
λf )

The spatial filtering of the beam is performed in the
transform plane. This filtering can be of low-pass or
high-pass type, and it can also involve selective phase-
change of any particular spatial frequency component by
using an external filter. A perfect imaging system trans-
mits all spatial frequencies equally, however, using filters
with apertures of different diameters would cause certain
spectral components to become attenuated which results
in a distorted image. They can be used in a clever way
can help us remove undesired structures from images and
improve the quality of the laser beam.

C. Inverse Fourier Transform

The inverse of the Fourier transform is naturally per-
formed as the wave keeps traveling in free space from the
point where it reaches the transform plane until it reaches
the image plane which is a distance si from the lens as
seen in Figure 2. This inverse transform is what causes
the image to be produced at this latter plane. In order
to understand this phenomena, we can consider a sin-
gle point source of light located at the transform plane.
This source produces a spherical wave propagating out-
ward with electric field E = 1

r e
i(kr−wt) where r is the

length of the vector pointing from the source to the ob-
servation point. We can approximate this spherical wave

as a paraboloidal wave where E ≈ 1
z e

ikzeik(x
2+y2/2z. If

the point isn’t exactly on the z-axis, but rather at some
point off the z-axis (xi, yi), then x would become x− xi,
and y, y − yi. And the electric field produced in the im-
age plane, a distance d from the point emitter emitter on
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the transform plane is

E(x, y, z) ≈ 1

d
eikdeik((x−xi)

2+(y−yi)
2)/2d (3)

Now, if we consider many of such point sources with
similar electric fields, then the electric field observed at
the image plane will be the sum of all of these point
sources which becomes the integral

E(x, y, z) ≈
1
de

ikd
∫∞
−∞

∫∞
−∞ E(xi, yi, z)e

ik((x−xi)
2+(y−yi)

2)/2ddxidyi

In the far field limit, this expression reduces to the Fraun-
hofer diffraction expression

E(x, y, z) ≈
∫ ∞

−∞

∫ ∞

−∞
E(xi, yi, z)e

−i2π(xxi+yyi)/λddxidyi

(4)
With this simplified expression of the electric field, we

are left with the inverse of a Fourier transform shown in
(1) which occurs at the transform plane. However, this
is a magnified image where the result rays are diverging,
by utilizing a second lens to control such diverging of the
rays, then we would be able to observe a more controlled
image on the image plane.

D. Optical Filters

Fourier optics naturally leads to the concept of low-
and high-pass filtering in optical systems. So-called low-
pass filters only permit frequencies above some thresh-
old to pass; frequencies higher than the threshold are
blocked. Conversely, high-pass filters only frequencies
above some threshold through, blocking the lower fre-
quencies.

Optical filtering has many applications in image pro-
cessing. Low-pass filters, by removing high frequencies,
can blur an image and remove unwanted artifacts. Opti-
cal high-pass filters act as edge-detectors, facilitating ob-
ject detection in images. Before the advent of powerful
and ubiquitous computers, these image processing tasks
leveraged the theory of Fourier optics, using an optical
system as an analog computer for Fourier transforms and
optical filtering.

Another very interesting application of Fourier optics
is in the field of optical computing. This branch of optics
was born in the late 20th century, when many scientists
dedicated their efforts to the dream of exploiting the in-
credible speed and parallel properties of light to perform
useful calculations. In particular, they aimed to use op-
tical systems as a way of processing information at very
high bandwidths [2]. One of the most important results
of these investigations is the fact that the fundamental
building block of the optical processor architecture is pre-
cisely the Fourier transform capabilities of lenses that we
study in this lab. More generally, many successful and
efficient optical computers have been built [2], including

devices with applications in radar signal processing, pat-
tern recognition, and optical memories.
In this lab, we study the Fourier transform performed

by a single lens and the corresponding inverse that is
carried out by another similar lens. Moreover, we analyze
how our resulting images compare to those generated on
a computer.

II. APPARATUS

In order to study the effects of Fourier optics, we con-
structed a “4-f” apparatus capable of optically produc-
ing forward and inverse Fourier transforms of laser light.
An image of the apparatus is shown in Figure 4, and a
simplified diagram can be found in Figure 5.

FIG. 4: Picture of the experimental apparatus.

FIG. 5: Simplified diagram of the 4-f apparatus. Begin-
ning on the left, collimated laser light passes through a
mesh mask one focal length, f , ahead of the first lens.
The masked beam then passes through this lens and
is focused onto the lens’ focal plane, where the Fourier
transform appears. The spatial frequency distribution
in the Fourier plane becomes the object for a second
lens with equal focal length, placed a distance f beyond
the Fourier plane. This second lens performs the inverse
Fourier transform, reconstructing the image in its own

focal plane. Figure sourced from the Lab Guide.

The 4-f apparatus was created in the following fashion.
Beginning with a sufficiently powerful source of red laser
light, we used spatial filters and a collimating lens to ex-
pand and collimate the laser beam, along with alignment
mirrors to adjust the beam’s direction. When appropri-
ate, we also inserted a filter at this stage to attenuate the
beam in order to adjust pixel saturation in the camera.
The collimated beam was then sent through a mesh

object. Various meshes were studied, including line grat-
ings (horizontal, vertical, and diagonal), grids of squares,
grids of hexagons, and a grid of the Northwestern ‘N’,
among others; Figure 7 shows some of these meshes.
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FIG. 6: Schematic diagram of the experimental appara-
tus.

Each mesh object was a thin sheet onto which a pat-
tern had been printed in black. This partially-opaque
pattern blocks portions of the incoming laser light, and
therefore the outgoing beam leaves with the profile of
the mesh. The location of the mesh is referred to as the
object plane.

Located next after the mesh in the path of the beam
was a lens of focal length f = 29± 1cm. Light sent into
this lens is concentrated onto the focal plane a distance
f beyond the lens. A second lens, equal in focal length
to the first, was positioned one focal length beyond the
Fourier plane (2f from the first lens). With these lenses
in place, the object, Fourier, and image planes had been
established (see Figure 5). A digital camera with a pixel
pitch of 8.32 µm was used to photograph the beam at
different positions along the apparatus.

The meshes, spatial filters, lenses, and camera were all
fixed to bases on a linear optical rail, which allowed for
fine positioning and adjustments.

Minor adjustments were made to the apparatus for our
two experimental setups.

A. Predicting features of Fourier transforms

Our first experiment compared observed spatial dis-
tances between features in the Fourier plane with dis-
tances expected from theory. To accommodate obser-
vation of the Fourier transform, we placed the digital
camera in the Fourier plane. Horizontal-line grating and
square-grid meshes were used as the objects for this ex-
periment, as their Fourier transforms consist of regularly-
spaced dots that readily allow comparison to theory.

The segment of the 4-f apparatus beyond the Fourier
plane was not relevant for this experimental setup; in-
deed, the camera necessarily blocked the beam in the
Fourier transform plane.

B. Comparing analog and digital low-pass filters

Our second experimental setup made use of the 4-f
apparatus in its entirety. In this experiment, we set out
to use a physical low-pass filter to produce blurred images
of the meshes and compare the results to those generated
digitally on a computer.

To construct an optical low-pass filter, we placed cir-
cular holes of varying diameter in the Fourier plane, tak-
ing care to align the incident beam to pass orthogonally
through the center of the hole. In this way, the parts of
the beam farthest from the center (corresponding to the
higher frequencies) were blocked. The camera was posi-
tioned in the image plane, where it photographed blurred
versions of the original mesh.

FIG. 7: Six of the meshes used for the low-pass filter ex-
periment. Appearing clockwise from the top left: 2.0mm
triangles at 2.0mm period, 3mm Northwestern ‘N’s at
4mm period, 0.6mm horizontal lines at 1.2mm period,
0.5mm squares at 1.0mm period, 1.0mm diagonal lines
at 2.0mm period, and 0.4mm horizontal lines at 0.8mm

period.
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III. MEASUREMENTS AND DATA ANALYSIS

A. Predicting features of Fourier transforms

One of the goals of this experiment was to verify the
theoretical expectation that thin lenses act as Fourier
transform devices. In this context, some of the simplest
mesh patterns were those containing only horizontal lines
of constant thickness (as shown in Figure 7). According
to our previous discussion in the introduction, each spa-
tial frequency νx should correspond to a dot at x = λfνx
in the Fourier plane. Thus, as lines get thicker and more
spaced out in the grating plane, we expect the dots in the
Fourier plane to get closer together. This is exactly what
is qualitatively observed in Figure 8. To get a quantita-
tive understanding of the phenomena, we measured the
spacing between all visible consecutive pairs in each of
the five mesh patterns. These measurements were av-
eraged and statistical uncertainties were computed from
the sample standard deviations. The conversion from
pixel units to real world length units was made using
the camera’s data sheet, which provided a pixel size of
a = 8.32µm. For the theoretical computation, we took
λ = 633 nm, f = 29 ± 1 cm and propagated the un-
certainty in the focal length throughout the calculations.
Final results are displayed in Table I.

FIG. 8: Photographs taken at the Fourier plane of each
of the five horizontal lines grating patterns. From left to
right: 0.3 mm lines @ 0.6 mm period; 0.4 mm lines @
0.8 mm period; 0.6 mm lines @ 1.2 mm period; 1.0 mm
lines @ 2.0 mm period. Each individual image is 2.5 mm

wide.

We also did the same kind of analysis with a repeating
squares pattern. Only one grating of this type was avail-
able, so we couldn’t investigate a progression of different
periods like we did with horizontal lines. Nevertheless,

Period (mm) Gap Size (mm) Predicted Gap Size (mm)

0.6 0.31± 0.01 0.30± 0.01

0.8 0.23± 0.03 0.23± 0.01

1.0 0.18± 0.03 0.183± 0.005

1.2 0.15± 0.01 0.152± 0.005

2.0 0.10± 0.01 0.092± 0.003

TABLE I: Average gap size between consecutive dots in
the Fourier plane when compared to the theoretical pre-

dictions for all five horizontal lines mesh patterns.

we were able to use this mesh to confirm that the exper-
imental apparatus is indeed capable of producing a 2D
Fourier transform. For repeating 0.5 × 0.5 mm squares
at a 1.0 × 1.0 mm period, we expect the horizontal and
vertical gap between adjacent dots in the Fourier plane
to be 0.183 ± 0.006 mm. Experimentally, we obtained a
gap size of 0.20± 0.01 mm. A side-by-side and properly
scaled comparison of the grating at the grating plane and
at the Fourier plane is shown in Figure 9

FIG. 9: Side-by-side comparison of the repeating squares
mesh (left) and its Fourier transform (right). The mesh
consisted of 0.5× 0.5 mm squares at a 1.0 mm period.

As a final step, the percent error between experiment
and theory was calculated for the horizontal lines and
repeating squares patterns. The results are displayed in
Table II.

Mesh Percent Error

Horizontal/0.6mm period 2.84%

Horizontal/0.8mm period 0.32%

Horizontal/1.0mm period -2.44%

Horizontal/1.2mm period 3.34%

Horizontal/2.0mm period 6.51%

Squares/1.0mm period 9.90%

TABLE II: Percent error of the experimentally measured
gap size between dots and the theoretical prediction.
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B. Comparing analog and digital low-pass filters

In addition to forward and inverse Fourier transforms,
our experimental apparatus has some analog image pro-
cessing capabilities. This is achieved via manipulation of
the image in the Fourier space before it is transformed
back to image space. For example, a low-pass filter can
be created by restricting the passage of light to a small
circular region at the center of the Fourier plane. This
effectively prevents the higher-frequency components of
the image from being transformed back by the second
lens, since they are farther away from the origin. In
this experiment, we used a pinhole wheel to control the
amount of light that is blocked, which is equivalent to
controlling the “strength” of the filter.

The development of advanced image processing tech-
niques is one of hallmarks of modern computation, so it
might be surprising to some that even the most simple
of these methods could be done with an optical system.
To convince ourselves that thinking about our appara-
tus as a Fourier transform device results in a correct de-
scription of what is really happening, we can compare
the pictures taken at the Fourier plane with the images
obtained from numerically calculating the Fourier trans-
form of each mesh. However, the results can be biased
depending on how the original pattern is represented in
the computer. For example, defects in the mesh, imper-
fections in the lenses, and the fact that the laser beam
is not a plane wave could interfere with the process. To
investigate and account for these effects, we used two dif-
ferent methods to analyze our data. In one of them, we
recreated the mesh patterns digitally, which means edges
were sharp and no noise was present before the image was
transformed. In the other, we provided pictures taken at
the mesh plane to the Fast Fourie Transform (FFT) algo-
rithm, so the source data might contain spurious artifacts
generated by the camera. On the other hand, it might
account for the Gaussian cross-section of the laser beam.

In both cases, we follow the same general procedure to
recreate the smoothing effect observed by the camera:

1. Convert the original image (either picture or digital
version of the mesh) to a gray scale version.

2. Load it in Python as a 2D-array of floats.

3. Use FFT (as provided by NumPy [3]) to Fourier
transform the image.

4. Use the camera’s pixel size a = 8.32µm to convert
the units from cycles/pixel to cycles/meter.

5. Frequency shift the result such that the zero fre-
quencies are at the center of the 2D-array.

6. Create a new 2D-array of the same size containing
a circular mask in the center. The diameter of the
circle in units of cycles/meter νΦ is related to the
diameter of the pinhole in units of meter Φ by the
formula: νΦ = Φ

λf . Note that if our 2D-array is

not square, the circle is actually an ellipse in the
cycles/pixel coordinates.

7. Apply the mask to the previously obtained Fourier
transform.

8. Frequency shift back and use inverse FFT to trans-
form the 2D-array back into a recognizable image.
The output should be a smoothed version of the
original.

As an example, we applied this procedure to the North-
western ‘N’ pattern exhibited in Figure 7. The results,
for both a digital version of the pattern and a photo of
the grating are shown in Figure 10. We can see that
experiment and theory agree really well, at least qualita-
tively. This is further evidence that converging lenses can
act as Fourier transform devices. Moreover, it serves as
an instructional example on the applications of low-pass
filters.

FIG. 10: Observed and simulated low pass filter progres-
sions for a Northwestern ‘N’ mesh. From left to right,
the columns correspond to: no filtering, a hole-filter of
diameter 1.0 mm, a hole-filter of diameter 0.5 mm, and
a hole-filter of diameter 0.3 mm. The first row contains
photographed results from the physical experiment. The
second row contains computer-simulated low pass filters
based off the unfiltered photograph (note that the first
image in both the top and middle rows are therefore the
same). The bottom row contains computer-simulated low

pass filters based off a computer-generated mesh.

Another interesting example is that of the hexagonal
pattern. Since the hexagon has 6-fold symmetry, we
should expect the Fourier transform of the hexagonal tiles
pattern to exhibit the same kind of symmetry, which is
what we observe in Figure 11. To start, we can per-
form the same kind of analysis that was done for the
Northwestern ‘N’ (which we report in Figure 12). How-
ever, because the hexagonal tiles are relatively simple, we
can also distinguish the smoothing features by looking at
“slices” of each image. For example, Figure 13 shows a
slice going through the center of one row of hexagons.
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It is then very clear that the low-pass filter is working
properly: as the higher frequencies are eliminated, the
transitions between outside and inside of the shapes are
affected by what is essentially the Gibbs phenomenon.

FIG. 11: Fourier transform of a computer-generated re-
peating pattern of 2.0 mm hexagons at a 3.0 mm period.
Note how it has 6-fold symmetry, as expected from the

lattice.

Investigating this process using the actual photographs
of the pattern before and after filtering is a little more
complicated. This is because the pictures are subject to
a variety of external effects, including irregular illumi-
nation, imperfections in the lenses, the Gaussian cross-
section of the laser beam, and other factors that make it
such that the differences between the two pictures are not
exclusively due to the frequency filtering. Nonetheless, if
we do some additional pre-processing to try and miti-
gate these effects, a similar trend should be expected. Of
course, the original picture will not have infinitely sharp
edges as its purely digital counterpart has, but we should
still be able to see that the edges get softer after the high
frequency components are removed. As it turns out, this
is exactly what we see in Figure 14.

Qualitatively speaking, we are done. We have shown
through cogent arguments that the image formed at the
focal plane of a thin converging lens must be the Fourier
transform of the object placed in front of it. However,
we lack some quantitative evidence to back this claim
up. In particular, we would like to quantify the amount
of “blurriness” introduced by our pinhole method and
compare it to the amount of “blurriness” generated with
the computer. This is actually not so hard to do if we
restrict ourselves to some key assumptions.

As we have verified experimentally, a more blurred im-
age will contain softer edges. In a review paper, Pertuz et
al. argue that a good way of quantifying the “sharpness”

FIG. 12: Observed and simulated low pass filter pro-
gressions for the mesh with 2.0 mm hexagons at a 3.0
mm period. From left to right, the columns correspond
to: no filtering, a hole-filter of diameter 1.0 mm, a hole-
filter of diameter 0.5 mm, and a hole-filter of diameter
0.2 mm. The first row contains photographed results
from the physical experiment. The second row contains
computer-simulated low pass filters based off the unfil-
tered photograph (note that the first image in both the
top and middle rows are therefore the same). The bottom
row contains computer-simulated low pass filters based

off a computer-generated mesh.

of the edges is using derivative operators such as the gra-
dient or Laplacian [4]. To determine how blurry the real
photographs were compared to the computer predictions,
we opted to convolve our images with a Laplacian ker-
nel, represented by the aperture in Equation 5. After
the convolution operation, we can compute the variance
over the entire resulting image to obtain a single metric
that tells us some information about the strength of the
low-pass filter applied to it.

L =

0 1 0
1 −4 1
0 1 0

 (5)

This was done for all three of the pinhole diameters
that we were able to analyze with the repeating hexagons
mesh. The ratio between the real photographs and the
computer results was not equal to 1. However, it main-
tained itself more or less constant for all three pairs of
images (see Table III). This means that although we
couldn’t account for the various external effects at play
during the real experiment to obtain a perfect match, we
were able to accurately predict how the images change
as the diameter of the pinhole changes (at least to within
one order of magnitude with a rather simple method).
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FIG. 13: Comparison between the computer-generated
mesh of hexagons and its smoothed version. We took
a slice of the image that goes through the center line
of a particular row of hexagons in the pattern. Recall
that this is the same pattern shown in the third row of
Figure 12 and which has its Fourier transform displayed

in Figure 11.

Φ (mm) Ratio of the Variance of the Laplacians

0.2 3.05× 105

0.5 2.37× 105

1.0 9.03× 105

TABLE III: Blurriness metrics for the repeating
hexagons. We compute the ratio between the values ob-
tained for the real pictures to the values obtained for the

predictions.

IV. DISCUSSION

Based on the periodic nature of the line-grating and
square-grid meshes, we expected to be able to predict
features of the optical Fourier transform both qualita-
tively and quantitatively. Indeed, our results support
predictions from theory.

Qualitatively, symmetries apparent in the patterns on
the meshes were observed in the corresponding Fourier
transforms. For example, the horizontal line-grating pat-
tern, which is by definition invariant under lateral trans-
lation, produces an observed Fourier transform that is
invariant under vertical translation (see Figure 8; the
higher saturation of pixels near the center is due to the fi-
nite extent of the beam rather than the Fourier transform
itself). Similar symmetries were observed in computer-
generated Fourier transforms of our meshes, including
the expected 6-fold symmetry of the hexagonal lattice
(Figure 11), which serves to validate the computational
methods used alongside optical observations.

We have also found agreement with theory in the qual-

FIG. 14: Comparison between the mesh of hexagons at
the grating plane and its smoothed version after going
through a pinhole of 0.5 mm diameter. We took a slice of
the image that goes through the center line of a particular
row of hexagons in the pattern. Note that in the top
figure we can observe the Gaussian nature of the beam.
Moreover, although barely noticeable because of all the
imperfections in the beam, we can see that the bottom

figure has its features smoothed out, as expected.

itative investigation of low-pass filters. Our resulting im-
ages for meshes blurred with an optical low-pass filter
are consistent both with digital transforms done on the
initial photograph of the unfiltered beam and with dig-
ital transforms performed on computer reproductions of
the meshes (Figure 10; Figure 12). Not only do holes of
smaller diameter produce progressively blurrier images
optically and digitally, but we also find the character-
istics of low-pass filtering in our results. For example,
ringing artifacts are present in both observed and sim-
ulated low-pass-filtered images, perhaps best shown in
the third column of Figure 12. And Figure 13 shows
the effect of blurring along a one-dimensional slice of a
low-pass-filtered image.

Quantitatively, observed average distances between
dots in the Fourier transforms of grating patterns fall
within the interval expected from theory (Table I; Table
II). It should be noted that statistical uncertainties as-
sociated with slight differences in the distances between
dots in the Fourier plane tended to outweigh system-
atic uncertainty arising from the measured focal length.
Even with a relatively large 1cm uncertainty in the focal
length, this systematic uncertainty was at times an order
of magnitude smaller than statically uncertainties (e.g.
the last row of Table I). This indicates that the observed
scale of the optically-produced Fourier transform is per-
haps not as sensitive to the positioning of the focal plane
as one may expect.

There were some factors that limited the accuracy of
the experiment. First, the intensity of the laser often
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completely saturated pixels struck by the center of the
beam, even when filters were used to attenuate it. Com-
bined with ambient lighting serving to add noise to the
results, it was not uncommon for subtler features of some
patterns’ transforms to be washed away. Moreover, the
uncertainty in the focal length of the lenses and spherical
aberration may have affected the accuracy of the results.
Nevertheless, our results are consistent with theory over-
all.

V. CONCLUSION

In this experiment, we applied the theory of Fourier
optics to test observations made in a 4-f optical sys-
tem. We validated theoretical predictions for the Fourier
transforms of various mesh objects both by qualitatively
observing the appropriate symmetries in optical Fourier
transforms and by quantitatively predicting gaps be-
tween dots in the observed transforms for line-grating
and square-grid patterns. We also investigated the effect
of spatial low-pass filters on resulting optical images and
found them in agreement with images produced compu-

tationally.
For future work, with some combination of a more at-

tenuated beam, more effective camera, or a more con-
trolled environment, it may be possible to investigate
the Fourier transforms of some of the more complicated
meshes, like the Northwestern ‘N’ mesh. This could also
permit future groups to quantify the root-mean-square
difference between observed and simulated transforms
with a higher degree of accuracy. And a more precise
method of determining the focal length of the lenses could
improve the precision of future results.
To enlarge the scope of the experiment in future work,

consideration could be given to acquiring more mesh ob-
jects to study. A pattern of concentric rings, for example,
may provide insight into the effects of its circular sym-
metry. Allowing custom meshes to be made would also
broaden the scope of future work.
Moreover, in this version of the experiment, we did not

investigate the effects of optical high-pass filters on the
object patterns, since the available disk-filters were far
too large and blocked the entirety of the beam. Providing
disks of sufficiently small diameter would allow future
versions of this experiment to examine the effects high-
pass filters along with loss-pass filters.
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Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan

Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu
Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020.

[4] Said Pertuz, Domenec Puig, and Miguel Angel Garcia.
Analysis of focus measure operators for shape-from-focus.
Pattern Recognition, 46(5):1415–1432, 2013.


